秩滤波器#

秩滤波器是使用局部灰度排序来计算滤波值的非线性滤波器。这组滤波器共享一个共同的基础:局部灰度直方图是在像素的邻域(由 2D 结构元素定义)上计算的。如果滤波值取为直方图的中间值,我们将得到经典的 中值滤波器。

秩滤波器可用于多种目的,例如

  • 图像质量增强,例如,图像平滑、锐化

  • 图像预处理,例如,降噪、对比度增强

  • 特征提取,例如,边界检测、孤立点检测

  • 图像后处理,例如,小对象去除、对象分组、轮廓平滑

一些众所周知的滤波器(例如,形态学膨胀和形态学腐蚀)是秩滤波器的特定情况 [1]

在本例中,我们将看到如何使用 skimage 中可用的一些线性和非线性滤波器来滤波灰度图像。我们使用来自 skimage.datacamera 图像进行所有比较。

import numpy as np
import matplotlib.pyplot as plt

from skimage.util import img_as_ubyte
from skimage import data
from skimage.exposure import histogram

noisy_image = img_as_ubyte(data.camera())
hist, hist_centers = histogram(noisy_image)

fig, ax = plt.subplots(ncols=2, figsize=(10, 5))

ax[0].imshow(noisy_image, cmap=plt.cm.gray)
ax[0].set_axis_off()

ax[1].plot(hist_centers, hist, lw=2)
ax[1].set_title('Gray-level histogram')

fig.tight_layout()
Gray-level histogram

降噪#

向图像添加一些噪声:1% 的像素随机设置为 255,1% 的像素随机设置为 0。应用中值滤波器来去除噪声。

from skimage.filters.rank import median
from skimage.morphology import disk, ball

rng = np.random.default_rng()
noise = rng.random(noisy_image.shape)
noisy_image = img_as_ubyte(data.camera())
noisy_image[noise > 0.99] = 255
noisy_image[noise < 0.01] = 0

fig, axes = plt.subplots(2, 2, figsize=(10, 10), sharex=True, sharey=True)
ax = axes.ravel()

ax[0].imshow(noisy_image, vmin=0, vmax=255, cmap=plt.cm.gray)
ax[0].set_title('Noisy image')

ax[1].imshow(median(noisy_image, disk(1)), vmin=0, vmax=255, cmap=plt.cm.gray)
ax[1].set_title('Median $r=1$')

ax[2].imshow(median(noisy_image, disk(5)), vmin=0, vmax=255, cmap=plt.cm.gray)
ax[2].set_title('Median $r=5$')

ax[3].imshow(median(noisy_image, disk(20)), vmin=0, vmax=255, cmap=plt.cm.gray)
ax[3].set_title('Median $r=20$')

for a in ax:
    a.set_axis_off()

fig.tight_layout()
Noisy image, Median $r=1$, Median $r=5$, Median $r=20$

添加的噪声被有效地去除,因为图像缺陷很小(1 像素宽),小的滤波器半径就足够了。随着半径的增加,较大尺寸的对象也会被过滤掉,例如相机三脚架。中值滤波器通常用于降噪,因为它保留了边界。例如,考虑噪声仅位于整个图像中的少数像素上,就像椒盐噪声 [2] 的情况一样:中值滤波器将忽略噪声像素,因为它们将显示为异常值;因此,与移动平均滤波器相比,它不会显着改变一组局部像素的中值。

图像平滑#

下面的示例显示了局部均值滤波器如何平滑摄像师图像。

from skimage.filters.rank import mean

loc_mean = mean(noisy_image, disk(10))

fig, ax = plt.subplots(ncols=2, figsize=(10, 5), sharex=True, sharey=True)

ax[0].imshow(noisy_image, vmin=0, vmax=255, cmap=plt.cm.gray)
ax[0].set_title('Original')

ax[1].imshow(loc_mean, vmin=0, vmax=255, cmap=plt.cm.gray)
ax[1].set_title('Local mean $r=10$')

for a in ax:
    a.set_axis_off()

fig.tight_layout()
Original, Local mean $r=10$

人们可能对平滑图像同时保留重要边界(中值滤波器已经实现了这一点)感兴趣。这里,我们使用双边滤波器,它将局部邻域限制为灰度级别与中心像素相似的像素。

注意

skimage.restoration.denoise_bilateral() 中提供了另一种用于彩色图像的实现。

from skimage.filters.rank import mean_bilateral

noisy_image = img_as_ubyte(data.camera())

bilat = mean_bilateral(noisy_image.astype(np.uint16), disk(20), s0=10, s1=10)

fig, axes = plt.subplots(nrows=2, ncols=2, figsize=(10, 10), sharex='row', sharey='row')
ax = axes.ravel()

ax[0].imshow(noisy_image, cmap=plt.cm.gray)
ax[0].set_title('Original')

ax[1].imshow(bilat, cmap=plt.cm.gray)
ax[1].set_title('Bilateral mean')

ax[2].imshow(noisy_image[100:250, 350:450], cmap=plt.cm.gray)

ax[3].imshow(bilat[100:250, 350:450], cmap=plt.cm.gray)

for a in ax:
    a.set_axis_off()

fig.tight_layout()
Original, Bilateral mean

可以看到图像的较大连续部分(例如天空)被平滑,而其他细节则被保留。

对比度增强#

我们在这里比较全局直方图均衡化如何在局部应用。

均衡化图像 [3] 对于每个像素邻域都具有大致线性的累积分布函数。局部版本的 [4] 直方图均衡化强调每个局部灰度级变化。

from skimage import exposure
from skimage.filters import rank

noisy_image = img_as_ubyte(data.camera())

# equalize globally and locally
glob = exposure.equalize_hist(noisy_image) * 255
loc = rank.equalize(noisy_image, disk(20))

# extract histogram for each image
hist = np.histogram(noisy_image, bins=np.arange(0, 256))
glob_hist = np.histogram(glob, bins=np.arange(0, 256))
loc_hist = np.histogram(loc, bins=np.arange(0, 256))

fig, axes = plt.subplots(nrows=3, ncols=2, figsize=(12, 12))
ax = axes.ravel()

ax[0].imshow(noisy_image, cmap=plt.cm.gray)
ax[0].set_axis_off()

ax[1].plot(hist[1][:-1], hist[0], lw=2)
ax[1].set_title('Histogram of gray values')

ax[2].imshow(glob, cmap=plt.cm.gray)
ax[2].set_axis_off()

ax[3].plot(glob_hist[1][:-1], glob_hist[0], lw=2)
ax[3].set_title('Histogram of gray values')

ax[4].imshow(loc, cmap=plt.cm.gray)
ax[4].set_axis_off()

ax[5].plot(loc_hist[1][:-1], loc_hist[0], lw=2)
ax[5].set_title('Histogram of gray values')

fig.tight_layout()
Histogram of gray values, Histogram of gray values, Histogram of gray values

最大化用于图像的灰度级数量的另一种方法是应用局部自动调整,即像素的灰度值在局部最小值和局部最大值之间按比例重新映射。

以下示例展示了局部自动色阶如何增强摄像师拍摄的图像。

from skimage.filters.rank import autolevel

noisy_image = img_as_ubyte(data.camera())

auto = autolevel(noisy_image.astype(np.uint16), disk(20))

fig, ax = plt.subplots(ncols=2, figsize=(10, 5), sharex=True, sharey=True)

ax[0].imshow(noisy_image, cmap=plt.cm.gray)
ax[0].set_title('Original')

ax[1].imshow(auto, cmap=plt.cm.gray)
ax[1].set_title('Local autolevel')

for a in ax:
    a.set_axis_off()

fig.tight_layout()
Original, Local autolevel

此滤镜对局部异常值非常敏感。可以使用自动色阶滤镜的百分位版本来缓和这种情况,该版本使用给定的百分位数(一个下限,一个上限)来代替局部最小值和最大值。下面的示例说明了百分位参数如何影响局部自动色阶的结果。

from skimage.filters.rank import autolevel_percentile

image = data.camera()

footprint = disk(20)
loc_autolevel = autolevel(image, footprint=footprint)
loc_perc_autolevel0 = autolevel_percentile(image, footprint=footprint, p0=0.01, p1=0.99)
loc_perc_autolevel1 = autolevel_percentile(image, footprint=footprint, p0=0.05, p1=0.95)
loc_perc_autolevel2 = autolevel_percentile(image, footprint=footprint, p0=0.1, p1=0.9)
loc_perc_autolevel3 = autolevel_percentile(image, footprint=footprint, p0=0.15, p1=0.85)

fig, axes = plt.subplots(nrows=3, ncols=2, figsize=(10, 10), sharex=True, sharey=True)
ax = axes.ravel()

title_list = [
    'Original',
    'auto_level',
    'auto-level 1%',
    'auto-level 5%',
    'auto-level 10%',
    'auto-level 15%',
]
image_list = [
    image,
    loc_autolevel,
    loc_perc_autolevel0,
    loc_perc_autolevel1,
    loc_perc_autolevel2,
    loc_perc_autolevel3,
]

for i in range(0, len(image_list)):
    ax[i].imshow(image_list[i], cmap=plt.cm.gray, vmin=0, vmax=255)
    ax[i].set_title(title_list[i])
    ax[i].set_axis_off()

fig.tight_layout()
Original, auto_level, auto-level 1%, auto-level 5%, auto-level 10%, auto-level 15%

形态学对比度增强滤镜用局部最大值替换中心像素,如果原始像素值最接近局部最大值;否则,用局部最小值替换。

from skimage.filters.rank import enhance_contrast

noisy_image = img_as_ubyte(data.camera())

enh = enhance_contrast(noisy_image, disk(5))

fig, axes = plt.subplots(nrows=2, ncols=2, figsize=(10, 10), sharex='row', sharey='row')
ax = axes.ravel()

ax[0].imshow(noisy_image, cmap=plt.cm.gray)
ax[0].set_title('Original')

ax[1].imshow(enh, cmap=plt.cm.gray)
ax[1].set_title('Local morphological contrast enhancement')

ax[2].imshow(noisy_image[100:250, 350:450], cmap=plt.cm.gray)

ax[3].imshow(enh[100:250, 350:450], cmap=plt.cm.gray)

for a in ax:
    a.set_axis_off()

fig.tight_layout()
Original, Local morphological contrast enhancement

局部形态学对比度增强的百分位版本使用百分位数p0p1代替局部最小值和最大值。

from skimage.filters.rank import enhance_contrast_percentile

noisy_image = img_as_ubyte(data.camera())

penh = enhance_contrast_percentile(noisy_image, disk(5), p0=0.1, p1=0.9)

fig, axes = plt.subplots(nrows=2, ncols=2, figsize=(10, 10), sharex='row', sharey='row')
ax = axes.ravel()

ax[0].imshow(noisy_image, cmap=plt.cm.gray)
ax[0].set_title('Original')

ax[1].imshow(penh, cmap=plt.cm.gray)
ax[1].set_title('Local percentile morphological\n contrast enhancement')

ax[2].imshow(noisy_image[100:250, 350:450], cmap=plt.cm.gray)

ax[3].imshow(penh[100:250, 350:450], cmap=plt.cm.gray)

for a in ax:
    a.set_axis_off()

fig.tight_layout()
Original, Local percentile morphological  contrast enhancement

图像阈值#

可以使用局部灰度级分布局部应用大津阈值法[5]。在下面的示例中,对于每个像素,通过最大化由结构元素定义的局部邻域的两个像素类别之间的方差来确定“最佳”阈值。

这些算法可用于 2D 和 3D 图像。

该示例比较了局部阈值化和全局阈值化,后者由skimage.filters.threshold_otsu()提供。请注意,前者比后者慢得多。

from skimage.filters.rank import otsu
from skimage.filters import threshold_otsu
from skimage import exposure

p8 = data.page()

radius = 10
footprint = disk(radius)

# t_loc_otsu is an image
t_loc_otsu = otsu(p8, footprint)
loc_otsu = p8 >= t_loc_otsu

# t_glob_otsu is a scalar
t_glob_otsu = threshold_otsu(p8)
glob_otsu = p8 >= t_glob_otsu

fig, axes = plt.subplots(nrows=2, ncols=2, figsize=(12, 12), sharex=True, sharey=True)
ax = axes.ravel()

fig.colorbar(ax[0].imshow(p8, cmap=plt.cm.gray), ax=ax[0])
ax[0].set_title('Original')

fig.colorbar(ax[1].imshow(t_loc_otsu, cmap=plt.cm.gray), ax=ax[1])
ax[1].set_title(f'Local Otsu ($r={radius}$)')

ax[2].imshow(p8 >= t_loc_otsu, cmap=plt.cm.gray)
ax[2].set_title('Original >= local Otsu')

ax[3].imshow(glob_otsu, cmap=plt.cm.gray)
ax[3].set_title(f'Global Otsu ($t={t_glob_otsu}$)')

for a in ax:
    a.set_axis_off()

fig.tight_layout()
Original, Local Otsu ($r=10$), Original >= local Otsu, Global Otsu ($t=157$)

下面的示例执行相同的比较,这次使用 3D 图像。

brain = exposure.rescale_intensity(data.brain().astype(float))

radius = 5
neighborhood = ball(radius)

# t_loc_otsu is an image
t_loc_otsu = rank.otsu(brain, neighborhood)
loc_otsu = brain >= t_loc_otsu

# t_glob_otsu is a scalar
t_glob_otsu = threshold_otsu(brain)
glob_otsu = brain >= t_glob_otsu

fig, axes = plt.subplots(nrows=2, ncols=2, figsize=(12, 12), sharex=True, sharey=True)
ax = axes.ravel()

slice_index = 3

fig.colorbar(ax[0].imshow(brain[slice_index], cmap=plt.cm.gray), ax=ax[0])
ax[0].set_title('Original')

fig.colorbar(ax[1].imshow(t_loc_otsu[slice_index], cmap=plt.cm.gray), ax=ax[1])
ax[1].set_title(f'Local Otsu ($r={radius}$)')

ax[2].imshow(brain[slice_index] >= t_loc_otsu[slice_index], cmap=plt.cm.gray)
ax[2].set_title('Original >= local Otsu')

ax[3].imshow(glob_otsu[slice_index], cmap=plt.cm.gray)
ax[3].set_title(f'Global Otsu ($t={t_glob_otsu}$)')

for a in ax:
    a.set_axis_off()

fig.tight_layout()
Original, Local Otsu ($r=5$), Original >= local Otsu, Global Otsu ($t=0.287109375$)
/opt/hostedtoolcache/Python/3.12.8/x64/lib/python3.12/site-packages/skimage/filters/rank/generic.py:353: UserWarning:

Possible precision loss converting image of type float64 to uint8 as required by rank filters. Convert manually using skimage.util.img_as_ubyte to silence this warning.

以下示例显示了局部大津阈值化如何处理应用于合成图像的全局电平偏移。

n = 100
theta = np.linspace(0, 10 * np.pi, n)
x = np.sin(theta)
m = (np.tile(x, (n, 1)) * np.linspace(0.1, 1, n) * 128 + 128).astype(np.uint8)

radius = 10
t = rank.otsu(m, disk(radius))

fig, ax = plt.subplots(ncols=2, figsize=(10, 5), sharex=True, sharey=True)

ax[0].imshow(m, cmap=plt.cm.gray)
ax[0].set_title('Original')

ax[1].imshow(m >= t, cmap=plt.cm.gray)
ax[1].set_title(f'Local Otsu ($r={radius}$)')

for a in ax:
    a.set_axis_off()

fig.tight_layout()
Original, Local Otsu ($r=10$)

图像形态学#

局部最大值和局部最小值是灰度级形态学的基础算子。

这是一个经典的形态学灰度级滤镜示例:开运算、闭运算和形态学梯度。

from skimage.filters.rank import maximum, minimum, gradient

noisy_image = img_as_ubyte(data.camera())

opening = maximum(minimum(noisy_image, disk(5)), disk(5))
closing = minimum(maximum(noisy_image, disk(5)), disk(5))
grad = gradient(noisy_image, disk(5))

# display results
fig, axes = plt.subplots(nrows=2, ncols=2, figsize=(10, 10), sharex=True, sharey=True)
ax = axes.ravel()

ax[0].imshow(noisy_image, cmap=plt.cm.gray)
ax[0].set_title('Original')

ax[1].imshow(closing, cmap=plt.cm.gray)
ax[1].set_title('Gray-level closing')

ax[2].imshow(opening, cmap=plt.cm.gray)
ax[2].set_title('Gray-level opening')

ax[3].imshow(grad, cmap=plt.cm.gray)
ax[3].set_title('Morphological gradient')

for a in ax:
    a.set_axis_off()

fig.tight_layout()
Original, Gray-level closing, Gray-level opening, Morphological gradient

特征提取#

局部直方图可用于计算局部熵,这与局部图像复杂度有关。熵使用以 2 为底的对数计算,即,滤镜返回对局部灰度级分布进行编码所需的最少位数。

skimage.filters.rank.entropy()返回给定结构元素上的局部熵。以下示例将此滤镜应用于 8 位和 16 位图像。

注意

为了更好地利用可用的图像位,该函数返回 8 位图像的 10 倍熵和 16 位图像的 1000 倍熵。

from skimage import data
from skimage.filters.rank import entropy
from skimage.morphology import disk
import numpy as np
import matplotlib.pyplot as plt

image = data.camera()

fig, ax = plt.subplots(ncols=2, figsize=(12, 6), sharex=True, sharey=True)

fig.colorbar(ax[0].imshow(image, cmap=plt.cm.gray), ax=ax[0])
ax[0].set_title('Image')

fig.colorbar(ax[1].imshow(entropy(image, disk(5)), cmap=plt.cm.gray), ax=ax[1])
ax[1].set_title('Entropy')

for a in ax:
    a.set_axis_off()

fig.tight_layout()
Image, Entropy

实现#

skimage.filters.rank滤镜的中心部分构建在滑动窗口上,该滑动窗口更新局部灰度级直方图。这种方法将算法复杂度限制为 O(n),其中 n 是图像像素的数量。复杂度也受到结构元素大小的限制。

在下文中,我们将比较skimage中提供的不同实现的性能。

from time import time

from scipy.ndimage import percentile_filter
from skimage.morphology import dilation
from skimage.filters.rank import median, maximum


def exec_and_timeit(func):
    """Decorator that returns both function results and execution time."""

    def wrapper(*arg):
        t1 = time()
        res = func(*arg)
        t2 = time()
        ms = (t2 - t1) * 1000.0
        return (res, ms)

    return wrapper


@exec_and_timeit
def cr_med(image, footprint):
    return median(image=image, footprint=footprint)


@exec_and_timeit
def cr_max(image, footprint):
    return maximum(image=image, footprint=footprint)


@exec_and_timeit
def cm_dil(image, footprint):
    return dilation(image=image, footprint=footprint)


@exec_and_timeit
def ndi_med(image, n):
    return percentile_filter(image, 50, size=n * 2 - 1)

比较以下各项之间的差异:

在结构元素尺寸增加的情况下

a = data.camera()

rec = []
e_range = range(1, 20, 2)
for r in e_range:
    elem = disk(r + 1)
    rc, ms_rc = cr_max(a, elem)
    rcm, ms_rcm = cm_dil(a, elem)
    rec.append((ms_rc, ms_rcm))

rec = np.asarray(rec)

fig, ax = plt.subplots(figsize=(10, 10), sharey=True)
ax.set_title('Performance with respect to element size')
ax.set_ylabel('Time (ms)')
ax.set_xlabel('Element radius')
ax.plot(e_range, rec)
ax.legend(['filters.rank.maximum', 'morphology.dilate'])

fig.tight_layout()
Performance with respect to element size

以及图像尺寸增加的情况下

r = 9
elem = disk(r + 1)

rec = []
s_range = range(100, 1000, 100)
for s in s_range:
    a = (rng.random((s, s)) * 256).astype(np.uint8)
    (rc, ms_rc) = cr_max(a, elem)
    (rcm, ms_rcm) = cm_dil(a, elem)
    rec.append((ms_rc, ms_rcm))

rec = np.asarray(rec)

fig, ax = plt.subplots()
ax.set_title('Performance with respect to image size')
ax.set_ylabel('Time (ms)')
ax.set_xlabel('Image size')
ax.plot(s_range, rec)
ax.legend(['filters.rank.maximum', 'morphology.dilate'])

fig.tight_layout()
Performance with respect to image size

比较以下各项之间的差异:

在结构元素尺寸增加的情况下

a = data.camera()

rec = []
e_range = range(2, 30, 4)
for r in e_range:
    elem = disk(r + 1)
    rc, ms_rc = cr_med(a, elem)
    rndi, ms_ndi = ndi_med(a, r)
    rec.append((ms_rc, ms_ndi))

rec = np.asarray(rec)

fig, ax = plt.subplots()
ax.set_title('Performance with respect to element size')
ax.plot(e_range, rec)
ax.legend(['filters.rank.median', 'scipy.ndimage.percentile'])
ax.set_ylabel('Time (ms)')
ax.set_xlabel('Element radius')
Performance with respect to element size
Text(0.5, 23.52222222222222, 'Element radius')

两种方法结果的比较

fig, ax = plt.subplots(ncols=2, figsize=(10, 5), sharex=True, sharey=True)

ax[0].set_title('filters.rank.median')
ax[0].imshow(rc, cmap=plt.cm.gray)

ax[1].set_title('scipy.ndimage.percentile')
ax[1].imshow(rndi, cmap=plt.cm.gray)

for a in ax:
    a.set_axis_off()

fig.tight_layout()
filters.rank.median, scipy.ndimage.percentile

在图像尺寸增加的情况下

r = 9
elem = disk(r + 1)

rec = []
s_range = [100, 200, 500, 1000]
for s in s_range:
    a = (rng.random((s, s)) * 256).astype(np.uint8)
    (rc, ms_rc) = cr_med(a, elem)
    rndi, ms_ndi = ndi_med(a, r)
    rec.append((ms_rc, ms_ndi))

rec = np.asarray(rec)

fig, ax = plt.subplots()
ax.set_title('Performance with respect to image size')
ax.plot(s_range, rec)
ax.legend(['filters.rank.median', 'scipy.ndimage.percentile'])
ax.set_ylabel('Time (ms)')
ax.set_xlabel('Image size')

fig.tight_layout()

plt.show()
Performance with respect to image size

脚本的总运行时间: (0 分钟 44.293 秒)

由 Sphinx-Gallery 生成的图库