注意
转到末尾 下载完整的示例代码。或者通过 Binder 在浏览器中运行此示例
Fisher 向量特征编码#
Fisher 向量是一种图像特征编码和量化技术,可以看作是流行的视觉词袋或 VLAD 算法的软或概率版本。图像使用视觉词汇建模,该词汇使用在低级图像特征(如 SIFT 或 ORB 描述符)上训练的 K-mode 高斯混合模型进行估计。Fisher 向量本身是高斯混合模型 (GMM) 相对于其参数(混合权重、均值和协方差矩阵)的梯度的串联。
在此示例中,我们为 scikit-learn 中的数字数据集计算 Fisher 向量,并在这些表示上训练分类器。
请注意,运行此示例需要 scikit-learn。
precision recall f1-score support
0 0.79 0.85 0.82 48
1 0.73 0.68 0.70 56
2 0.60 0.77 0.68 35
3 0.56 0.57 0.56 44
4 0.79 0.62 0.70 48
5 0.56 0.60 0.58 47
6 0.50 0.63 0.56 38
7 0.70 0.68 0.69 44
8 0.65 0.52 0.58 46
9 0.57 0.52 0.55 44
accuracy 0.64 450
macro avg 0.64 0.65 0.64 450
weighted avg 0.65 0.64 0.64 450
from matplotlib import pyplot as plt
import numpy as np
from sklearn.datasets import load_digits
from sklearn.metrics import classification_report, ConfusionMatrixDisplay
from sklearn.model_selection import train_test_split
from sklearn.svm import LinearSVC
from skimage.transform import resize
from skimage.feature import fisher_vector, ORB, learn_gmm
data = load_digits()
images = data.images
targets = data.target
# Resize images so that ORB detects interest points for all images
images = np.array([resize(image, (80, 80)) for image in images])
# Compute ORB descriptors for each image
descriptors = []
for image in images:
detector_extractor = ORB(n_keypoints=5, harris_k=0.01)
detector_extractor.detect_and_extract(image)
descriptors.append(detector_extractor.descriptors.astype('float32'))
# Split the data into training and testing subsets
train_descriptors, test_descriptors, train_targets, test_targets = train_test_split(
descriptors, targets
)
# Train a K-mode GMM
k = 16
gmm = learn_gmm(train_descriptors, n_modes=k)
# Compute the Fisher vectors
training_fvs = np.array(
[fisher_vector(descriptor_mat, gmm) for descriptor_mat in train_descriptors]
)
testing_fvs = np.array(
[fisher_vector(descriptor_mat, gmm) for descriptor_mat in test_descriptors]
)
svm = LinearSVC().fit(training_fvs, train_targets)
predictions = svm.predict(testing_fvs)
print(classification_report(test_targets, predictions))
ConfusionMatrixDisplay.from_estimator(
svm,
testing_fvs,
test_targets,
cmap=plt.cm.Blues,
)
plt.show()
脚本的总运行时间:(0 分 43.819 秒)