注意
转到末尾下载完整的示例代码。 或通过 Binder 在浏览器中运行此示例
移除对象#
scikit-image 提供了几种从 N 维图像中移除对象的方法。这里,“对象”(和“孔洞”)定义为具有相同标签值,且与背景和其他对象不同的样本组。
此示例演示如何根据对象的大小或它们与其他对象的距离移除对象。
import matplotlib.pyplot as plt
import skimage as ski
# Extract foreground by thresholding an image taken by the Hubble Telescope
image = ski.color.rgb2gray(ski.data.hubble_deep_field())
foreground = image > ski.filters.threshold_li(image)
objects = ski.measure.label(foreground)
# Separate objects into regions larger and smaller than 100 pixels
large_objects = ski.morphology.remove_small_objects(objects, min_size=100)
small_objects = objects ^ large_objects
# Remove objects until remaining ones are at least 100 pixels apart.
# By default, larger ones take precedence.
spaced_objects = ski.morphology.remove_objects_by_distance(objects, min_distance=100)
# Plot the results
fig, ax = plt.subplots(2, 2, figsize=(10, 10), sharex=True, sharey=True)
ax[0, 0].set_title("labeled objects")
ax[0, 0].imshow(ski.color.label2rgb(objects, image=image, bg_label=0))
ax[0, 1].set_title("large objects")
ax[0, 1].imshow(ski.color.label2rgb(large_objects, bg_label=0))
ax[1, 1].set_title("small objects")
ax[1, 1].imshow(ski.color.label2rgb(small_objects, bg_label=0))
ax[1, 0].set_title("spaced objects (nearest removed)")
ax[1, 0].imshow(ski.color.label2rgb(spaced_objects, bg_label=0))
plt.show()
脚本的总运行时间:(0 分钟 1.829 秒)